Band-Limited Stochastic Processes in Discrete and Continuous Time
نویسنده
چکیده
In the theory of stochastic differential equations, it is commonly assumed that the forcing function is a Wiener process. Such a process has an infinite bandwidth in the frequency domain. In practice, however, all stochastic processes have a limited bandwidth. A theory of band-limited linear stochastic processes is described that reflects this reality, and it is shown how the corresponding ARMA models can be estimated. By ignoring the limitation on the frequencies of the forcing function, in the process of fitting a conventional ARMA model, one is liable to derive estimates that are severely biased. If the maximum frequency in the sampled data is less than the Nyquist value, then the underlying continuous function can be reconstituted by sinc function or Fourier interpolation. The estimation biases can be avoided by resampling the continuous process at a rate corresponding to the maximum frequency of the forcing function. Then, there is a direct correspondence between the parameters of the band-limited ARMA model and those of an equivalent continuous-time process.
منابع مشابه
On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملOptimal Stochastic Control in Continuous Time with Wiener Processes: General Results and Applications to Optimal Wildlife Management
We present a stochastic optimal control approach to wildlife management. The objective value is the present value of hunting and meat, reduced by the present value of the costs of plant damages and traffic accidents caused by the wildlife population. First, general optimal control functions and value functions are derived. Then, numerically specified optimal control functions and value func...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملArrival probability in the stochastic networks with an established discrete time Markov chain
The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...
متن کامل